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Abstract. In recent years, extreme drought events in the United States have seen increases in frequency and severity under-

lining a need to improve our understanding of vegetation resilience and adaptation. Flash droughts are extreme events marked

by rapid dry down of soils due to lack of precipitation, high temperatures, and dry air. These events are also associated with

reduced preparation, response, and management time windows before and during drought which exacerbate their detrimental

impacts on people and food systems. Improvements in actionable information for flash drought management are informed by5

atmospheric and land surface processes, including responses and feedbacks from vegetation. Phenologic state, or growth stage,

is an important metric for modeling how vegetation interacts with the atmosphere. We investigate how uncertainty in vegeta-

tion phenology propagates through vegetation responses during drought and non-drought periods by coupling a land-surface

hydrology model to a predictive phenology model. We identify plant processes that influence vegetation responses to drought

and assess the role of vegetation in the partitioning of carbon, water, and energy fluxes. We selected study sites in Kansas,10

USA where extreme drought events have been observed, in particular the flash drought of 2012, and where AmeriFlux eddy

covariance towers provide data which can be used to evaluate water movement between the land (surface and subsurface) and

the atmosphere. We evaluate the evolution of plant phenology, water use, and productivity using different water stress events.

Results show that phenological responses using model parameters generated from periods of average precipitation show slower

responses to drought as compared to parameters generated to reflect isohydric or anisohydric tendencies. Evapotranspiration15

(ET) and gross primary productivity (GPP) show similarly timed responses to water stress. We find plants alter water use

strategies under extreme drought, with plants nearly halting atmospheric water and carbon exchanges when under stress. De-

creases in uncertainty from ensemble estimates of GPP and ET during the flash drought period reduce to winter levels implying

variability in plant life stage and functionality during drought periods are similar to those of dormant months. These results

have implications for improving predictions of drought impacts on vegetation.20
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1 Introduction

Frequency and severity of extreme droughts are predicted to increase within the next century (Dai, 2013). Flash droughts are a

particular type of extreme drought characterized by their rapid intensification (Svoboda et al., 2002; Ford and Labosier, 2017;

Otkin et al., 2018, 2022). The flash drought of 2012 that impacted the Central United States amplified the need to understand25

and predict flash droughts because of its estimated $30 billion of impacts to agriculture (Otkin et al., 2018). Work over the

last decade has improved methods for identifying flash droughts based on development time and concurrent meteorological

conditions (see Lisonbee et al., 2021, for a summary of flash drought definitions and indicators). Many studies have examined

the drivers (e.g., lack of precipitation, greater atmospheric demand for water, above average temperatures) and impacts (e.g.,

soil moisture deficits and damages to agriculture) of flash drought (e.g., Lowman et al., in press; Christian et al., 2023, 2022;30

Jin et al., 2019; Otkin et al., 2018) while others have examined vegetation-atmosphere interactions (Chen et al., 2021; Zhang

and Yuan, 2020; Gerken et al., 2018; Otkin et al., 2016; Novick et al., 2016).

Further assessment of vegetation-atmosphere feedback mechanisms may help improve identification of flash drought onset

(Qing et al., 2022). Gross primary productivity (GPP), or carbon assimilation by plants during photosynthesis, is one such

vegetation-atmospheric interaction. Large reductions in GPP due to soil moisture and temperature anomalies can be used to35

mark the beginning and duration of flash drought events (Zhang and Yuan, 2020; Poonia et al., 2022), as seen in the 2012 flash

drought (Jin et al., 2019). Flash droughts can intensify through land-atmosphere feedbacks (Basara et al., 2019); for example,

vegetation expediting water stress by pulling water from deeper soil layers and further drying soils (Qing et al., 2022). Otkin

et al. (2016) studied the evolution of soil moisture and vegetation conditions during the 2012 event, finding that changes in soil

moisture and evaporative stress indicators preceded rapid drought intensification in the US Drought Monitor (USDM, Svoboda40

et al. (2002)). Chen et al. (2019) found declines in evapotranspiration (ET), another interaction between the vegetation and the

atmosphere, to be a major sign of flash drought intensification.

Interactions between vegetation and the atmosphere are altered during flash drought events, thus it is necessary to consider

vegetation state when studying the effects of flash drought (Chen et al., 2021). Additionally, capturing differences across

plant types is essential for modeling vegetation response to drought. Failure to account for differential responses across plant45

function types (PFTs) could result in underestimating the plant’s ability to maintain its function under water stress (Zhou

et al., 2013). Roman et al. (2015) showed that tree species in a forested region behaved differently during drought, with some

species exhibiting isohydric tendencies, whereas others were more anisohydric. Isohydric plants are more conservative with

their water use strategies when under stress and tend to regulate their stomatal conductance making them less susceptible

to hydraulic failure (Konings and Gentine, 2017). These tendencies dictate how much photosynthesis occurs and thus how50

much carbon is exchanged (Roman et al., 2015). However, Garcia-Forner et al. (2017) cautions against making links between

carbon assimilation and water potential regulation by showing similar rates of carbon assimilation under controlled drought

simulations between two species of Mediterranean trees with opposing drought responses (one isohydric and one anisohydric).

For some species, hydraulic regulation exists on a spectrum and can shift between isohydric and anisohydric in response

to atmospheric and water conditions (Guo et al., 2020; Wu et al., 2021) leading to variation and uncertainties in water use55
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strategies (Kannenberg et al., 2022). Ecosystem scale modeling may be able to incorporate the plant level spatial and temporal

variability in water use strategies (Kannenberg et al., 2022) by taking into account concurrent meteorological and environmental

conditions that influence plant water use tendencies beyond the species physiological characteristics (Hochberg et al., 2018).

Vegetation state parameterization in ecohydrological models could also dictate whether an area experiences carbon uptake

changes during a flash drought due to the linkage between ET and GPP that couples the carbon and water cycles (Hosseini60

et al., 2022). There is evidence connecting vegetation changes in response to flash drought to lower plant production (Zhang

et al., 2020; Jin et al., 2019; He et al., 2018; Otkin et al., 2016; Hunt et al., 2014). Jin et al. (2019) and He et al. (2018) found

that croplands, grasslands, and shrublands experienced the majority of loss to carbon uptake rates during the droughts of 2011

and 2012 across the central US and similar rates of ET were found in croplands in the US northern plain flash drought of

2017 (He et al., 2019; Kimball et al., 2019). Chen et al. (2021) showed increases in LAI led to increased ET and that in a low65

moisture regime the amount of latent heat released due to ET was sensitive to changes in LAI. Hunt et al. (2014) showed that

maize experienced decreases in stomatal conductance, which led to declines in GPP and ET, during a flash drought. Multiple

studies showed crop yield losses following flash drought (e.g., Otkin et al., 2016; Hunt et al., 2014).

Previous studies have used remotely sensed or ground measurements and indicators to study vegetation responses to flash

drought (e.g., Christian et al., 2022; Zhang et al., 2020; Basara et al., 2019). In contrast, Chen et al. (2021) used an earth system70

model to gauge plant behavior during flash drought while Hosseini et al. (2022) used models with different phenological

forcing to investigate impacts on the water and carbon cycles during drought. Remotely sensed and eddy covariance data

provide snapshots of the state of the system at point or preset spatial resolutions, and fixed temporal resolutions, while models

can scale in space and time. Inherently simplified due to the complexity of systems, numerical models incorporate physical

and biological processes and statistical techniques to make predictions based on current states and their uncertainties (Dietze,75

2017). Data assimilation procedures and Bayesian inference allow modelers to incorporate observations while also identifying

sources of uncertainty in both processes and scale (Dietze et al., 2013; Dietze, 2017).

Capturing phenology has implications for photosynthetic activity (Lowman and Barros, 2018; Stöckli et al., 2008; Jolly

et al., 2005) which will influence the water, carbon, and energy fluxes coupled between the land and atmosphere. We use two

versions of the Duke Coupled Land-Surface Hydrology Model (DCHM) that incorporate physically parameterized routines80

for photosynthesis (Garcia-Quijano and Barros, 2005; Gebremichael and Barros, 2006) and predictive phenology, or plant

life stage (Lowman and Barros, 2016, 2018) to more closely investigate if and how vegetation water use strategies accelerate

or decelerate dry down before and during flash drought. Data assimilation techniques allow us to capture model uncertainty

around processes controlling vegetation activity, and in particular, assimilating vegetation phenology can improve the detection

of drought (Mocko et al., 2021). We investigate whether plants exhibit anisohydric tendencies thereby exacerbating the dry85

down, or whether they regulate their water intake to preserve soil moisture to mitigate the effects of flash drought. In turn,

we also investigate if plant behavior can be altered during periods of water stress by predicting phenology model parameters

from hydrologic model outputs in dry and wet periods. We hypothesize that simulated transpiration and carbon uptake rates

will taper during flash drought due to limited soil water availability and that the phenological changes are directly related to

changes in transpiration rates and GPP (Figure 1). Our specific hypotheses are:90
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Figure 1. Schematic of water, carbon, and energy fluxes with hypotheses about ecological responses to flash drought indicated with orange

arrows. Evaporation initially increases before completely shutting down due to lack of precipitation and increased atmospheric demand for

water. Water will also evaporate shortly after precipitation events leaving little to no chance of infiltration. Infiltration and root-uptake slow

during flash drought causing declines in rates of transpiration and carbon uptake. In response to decreases in water availability, vegetation

phenological states will diminish exacerbating the reduction in plant-atmosphere interactions.

H1 Evaporation initially increases before completely shutting down due to lack of precipitation and increased atmospheric

demand for water. Water will also evaporate shortly after precipitation events leaving little to no chance of infiltration.

H2 Infiltration and root-uptake slow during flash drought causing declines in rates of transpiration and carbon uptake.

H3 In response to decreases in water availability, vegetation phenological states will diminish exacerbating the reduction in

plant-atmosphere interactions.95

Here we use phenological responses, (i.e., FPAR, LAI) to examine how flash droughts affect vegetation state and ultimately

impact the surface fluxes governing the movement of water and carbon between the land and atmosphere. We use the well-

studied flash drought of 2012 to compare vegetation growth state and water use strategies during flash drought and non-drought

periods to better understand how plants modulate water and interact with the atmosphere when under stress. We compare our

model results with eddy covariance and remotely sensed values of vegetation state and atmospheric interactions. Discrepancies100

between observations and models with predictive versus forced phenology illuminate physical processes dictating plant water

use strategies, for example, suppressing transpiration by closing stomata and limiting carbon intake. This study extends pre-

vious research on the water and carbon movement between plants and the atmosphere during flash drought by simulating the

propagation of uncertainty after implementing a predictive phenology routine to understand how variability in the representa-

tion of vegetation state within a modeling framework impacts land-atmosphere exchanges during extreme drought events.105
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2 Methods and Data

2.1 Overview of Modeling Approach

Remotely sensed or ground observations of land and atmospheric responses to flash drought are useful in identifying changes in

plant phenology, soil moisture, evaporation rates, etc., but observations alone are unable to fully explain the mechanisms driving

the ecological responses and water use strategy adaptations. Physically-based models can help fill the gaps in understanding110

what drives these changes by identifying key processes in the land-atmosphere interactions. For example, decreases in ground-

based or satellite-derived GPP do not illuminate what processes caused the change, whereas a process based model might

be able to signal that changes in root water uptake lead to decreased transpiration rates, which ultimately lead to decreased

photosynthesis and carbon assimilation.

Within physical models, changes in state variables (e.g., soil moisture, root uptake, evaporation rates, etc.) are dependent115

upon forced meteorological conditions. Water use strategies are dictated by vegetation phenological states (Hu et al., 2008) and

strongly influence GPP and ET (Beer et al., 2009). Therefore, physical, process-based models are able to adapt to changing

meteorological conditions and capture mechanistic changes in vegetation-atmosphere interactions. Our goal is to identify

vegetation responses that occur as a result of flash drought and associate those changes with the physical parameterizations

used in a land-surface hydrology model.120

In order to identify physical mechanisms driving plant responses to flash drought intensification, we use the physically based

Duke Coupled surface-subsurface Hydrology Model with dynamic vegetation (DCHM-V). We provide the DCHM-V with plant

life stage updates from Moderate Resolution Imaging Spectroradiometer (MODIS) fraction photosynthetically active radiation

(FPAR) and LAI products in order to establish baseline outputs of soil moisture (SM), root uptake (RU), ET, and GPP from the

DCHM-V. We then implement an ensemble Kalman filter (EnKF) data assimilation procedure following Lowman and Barros125

(2018) to establish ensembles of parameters to use in a dynamic canopy biophysical properties (DCBP) model within the

DCHM-V yielding the DCHM with prognostic vegetation (DCHM-PV). The prognostic vegetation (i.e. phenological) model

uses seasonal parameters (e.g. temperature and photoperiod) as well as meteorological parameters (e.g., soil and atmospheric

water availability) to predict vegetation state and functionality (e.g., Lowman and Barros, 2018; Kim et al., 2015; Caldararu

et al., 2014; Stöckli et al., 2008; Moradkhani et al., 2005). In addition to recomputing the same outputs of interest from the130

DCHM-V, we run Monte Carlo simulations of the DCHM-PV with the ensemble parameters from the EnKF in order to predict

FPAR and LAI from the DCBP rather than forcing phenology with MODIS. We validate model simulations against ground,

remotely sensed, and other modeled observations. The data sets to force or validate all versions of the DCHM are summarized

in Table 1 and described in the following subsections.
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Table 1. Summary of data products and uses

Dataset Variable(s)
Spatial Reso-

lution

Temporal

Resolution
Use Reference

StageIV Precipitation 4 km hourly Forcing

Baldwin and

Mitchell (1998)

Du (2011)

NLDAS-2

Forcing File

A

Atmospheric 0.125◦ hourly
Forcing/Data

Assimilation
Mitchell et al. (2004)

NLDAS-2

Mosaic

Vegetation

Fraction/

Albedo

0.125◦ hourly
Forcing/Data

Assimilation
Xia et al. (2012)

MODIS

MOD15A2H
LAI/FPAR 500 m 8 day

Forcing/Data

Assimilation
Myneni et al. (2015)

MODIS

MOD12Q1
Land Cover 500 m yearly Forcing

Friedl and Sulla-

Menashe (2015)

STATSGO
Soil Texture

and Porosity
30 arcsec fixed forcing

Miller and White

(1998)

AmeriFlux
GPP, latent

heat, SM
point 30 min. Validation

Baldocchi et al.

(2001)

MODIS

MOD17A2H
GPP 500 m 8 day Validation Running et al. (2015)

Noah-LSM SM 0.125◦ hourly Validation Xia et al. (2012)

SMERGE SM 0.125◦ hourly Validation Tobin et al. (2019)

2.2 Forcing Data Sets135

2.2.1 Meteorological

The 1-D DCHM (-V and -PV) spatial and temporal resolution is set to the scale of the available precipitation forcing data.

For this study, we use the native resolution of the Stage-IV precipitation forcing from the National Oceanic and Atmospheric

Administration (NOAA) National Centers for Environmental Prediction (NCEP) (Baldwin and Mitchell, 1998; Du, 2011). The
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Stage-IV dataset has 4 km spatial resolution and 1 h temporal resolution and is available beginning from 2002. Atmospheric140

forcing data used in the DCHM are from the North America Land Data Assimilation System Phase 2 (NLDAS-2) Forcing File

A. NLDAS-2 is a combination of observational and reanalysis data sets (Mitchell et al., 2004) intended for use in land surface

models like the DCHM. The data are available at 0.125 degree spatial resolution and interpolated to the 4 km Stage-IV grid.

No temporal interpolation was necessary.

2.2.2 Land Cover145

The land surface albedo and fraction of vegetation cover come from NLDAS-2 Mosaic Land Surface Model L4 dataset (Xia

et al., 2012; Mitchell et al., 2004). NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) MCD12Q1 remotely

sensed satellite data product is used to inform the model of land cover classification. In particular, we use the University of

Maryland classification scheme (Sulla-Menashe and Friedl, 2018). Within the model, the classification is updated yearly. The

native spatial resolution of this data set is 500 m and we interpolated to the 4 km size for model implementation using a most150

frequent approach.

2.2.3 Soil Texture and Porosity

Soil texture and porosity data was acquired from Soil Information for Environmental Modeling and Ecosystem Management

CONUS-Soil (Miller and White, 1998). The CONUS-Soil spatial resolution is 1 km with 11 layers. We upscaled the raw soil

texture and porosity data to the 4-km Stage-IV grid. For each pixel, we approximate soil porosity by averaging the top eight155

layers (100 cm) and we represent texture using the most frequent texture. By averaging over the top 100 cm, we avoid averaging

layers interpolated as bedrock, and thus near zero porosity.

2.2.4 Vegetation

MODIS LAI and FPAR data were downloaded for all of CONUS at the native 500-m spatial and 8 day temporal resolution.

Before scaling to the DCHM grid and time scale, the data for each pixel were smoothed using a Savitsky-Golay (Savitzky and160

Golay, 1964) algorithm following Chen et al. (2004) in order to preserve seasonality and reduce noise associated with cloud

cover and other atmospheric effects (Cihlar et al., 1997; Tanré et al., 1997). We use the m=6 scaling window and d=4 degree

of the interpolating polynomial as in Chen et al. (2004) and Lowman and Barros (2016). After the smoothing filter is applied,

the data is up-scaled from 500 m to 4 km resolution and linearly interpolated to a 1 h temporal resolution.

2.3 Validation Data Sets165

We use the flash drought of 2012 to compare model results to multiple ground and remotely sensed observations. Modeled

soil moisture (SM) fluxes are compared to SoilMERGE (SMERGE), a 0.125 degree root-zone (0-40 cm) SM product obtained

from ‘merging’ NLDAS-2 outputs with European Space Agency Climate Change Initiative surface satellite data which can

predict vegetation health anomalies (Tobin et al., 2019). We also validate SM estimates against simulated SM from Noah land-
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Figure 2. Maps of the U.S. Drought Monitor with the three AmeriFlux tower sites (US-KFS, US-KLS, and US-Kon) showing the evolution

of the U.S. flash drought of 2012.

surface model (LSM) for all three root zones used in DCHM. Noah-LSM is a physically based model forced with NLDAS-2170

Forcing File A (Xia et al., 2012)). When AmeriFlux SM data is available, we compare with modeled soil moisture from the

top layer since most AmeriFlux SM sensors are in the top few centimeters of soil. Computed outputs of GPP are compared

to MODIS (MOD17A2H) GPP product and AmeriFlux eddy covariance outputs of GPP. We computed ET from AmeriFlux

eddy covariance flux tower values by dividing latent heat flux by the latent heat of vaporization of water and use the results to

validate model outputs of ET.175

2.4 Model Site Locations

This study employs eddy covariance data from three AmeriFlux sites in Kansas (US-KFS, US-KLS, US-Kon, Figure 2 and

Table 2). Each site was chosen because of the availability of GPP and latent heat (converted to ET) data during the flash drought

year of 2012 and at least one wet year after 2012. Static characteristics of PFT, soil texture and porosity, and geographic

information for the study sites are shown in Table 2. According to the MODIS land cover classification product (MCD12Q1),180

each site had a unique vegetation cover type (savanna, grassland, cropland, Table 2). The PFT is a result of interpolating

MODIS MCD12Q1 Land Cover Type 2 to the 4-km grid and does not necessarily align with the land cover from AmeriFlux.

The soil texture and porosity are interpolated CONUS-Soil (Miller and White, 1998) values.

2.5 Model Description

We employ two 1-D versions of the DCHM coupled land-surface hydrology model that accounts for mass (water) and energy185

transfers between three soil layers, the surface, and the atmosphere (Devonec and Barros, 2002)) applied on a 4-km grid.

The 4-km grid was chosen since it is the native spatial resolution of the Stage-IV data, as precipitation is the main source of

uncertainty when modeling drought (Trenberth et al., 2014). The soil depths we use best match the USDA Kansas soil profile
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Table 2. AmeriFlux study sites contained within StageIV pixels.

Annual Precipitation [mm]

Site Latitude Longitude PFT Texture Porosity Reference
AmeriFlux

mean

StageIV

2012

StageIV

2019

US-KFS 39.0561 -95.1907 SAV
silty clay

loam
0.4225 Brunsell (2020a) 1012 597 1373

US-KLS 38.7754 -97.5684 CRO silt loam 0.4812 Brunsell (2021) 812 558 1425

US-Kon 39.0824 -96.5603 GRA
silty clay

loam
0.4588 Brunsell (2020b) 867 490 1346

Plant functional type (PFT), soil texture, and porosity determined after interpolation to the StageIV grid. Abbreviations: SAV = Savanna, CRO = Cropland, GRA = grassland.

(Soil Survey Staff). We maintain 8 cm for the top soil layer for model stability, but use 35 in. (approx 89 cm) for root zone

depth and 72 in (89-183 cm) for the impermeable layer. This yields the three soil layers: top (0-8 cm), middle (8-89 cm),190

and bottom (89-183 cm). Each PFT has its own root distribution function dictating root water uptake through the three layers

(Lowman and Barros, 2016; Zeng, 2001; Lai and Katul, 2000; Clausnitzer and Hopmans, 1994).

The water balance includes subroutines for evaporation from the different land surfaces (bare soil, vegetation), ponding

and groundwater runoff, snow hydrology, and root water uptake while energy balance routines solve for net radiative fluxes,

sensible and latent heat transfers, and ground heat fluxes (Lowman and Barros, 2018, 2016; Tao and Barros, 2014, 2013; Yildiz195

and Barros, 2007, 2005; Garcia-Quijano and Barros, 2005; Devonec and Barros, 2002; Barros, 1995). The water and energy

balances are linked through parameterized routines for photosynthesis following the Farquhar model (Lowman and Barros,

2016; Garcia-Quijano and Barros, 2005; Farquhar and Caemmerer, 1982; Farquhar et al., 1980).

The main difference between the DCHM-V and DCHM-PV is that the DCHM-V has vegetative phenology forced with

updates from MODIS MOD15A2H FPAR and LAI products and the DCHM-PV implements a subroutine for predicting phe-200

nology (DCBP). The DCHM-PV is run using an ensemble of parameters (Table 4) generated using an Ensemble Kalman Filter

(EnKF) from outputs from the DCHM-V following Lowman and Barros (2018) with a separate simulation for each ensemble

member.

Establishing differences in the outputs from DCHM-V and -PV illuminate changes in plant behavior. MODIS is a passive

sensor and observes only the red (648 nm) and near-infrared (NIR, 858 nm) spectral bands to estimate values of LAI (Myneni205

et al., 2015). The DCBP model predicts plant life stage based on climatological properties of water availability, air temperature,

and evaporative demand (Lowman and Barros, 2018). We updated FPAR and LAI instead of forcing them with MODIS obser-

vations to evaluate impacts on estimates of ET and GPP (Lowman and Barros, 2018; Kim et al., 2015; Caldararu et al., 2014).

Predicting phenological state variables also provides updates on daily time scales rather than through interpolation from the 8

day measurements of MODIS. We compare model outputs for a wet year and a dry year to illuminate the vegetation responses210

to flash drought.
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The data assimilation procedure within the predictive phenology model jointly estimates the current phenological state

(FPAR, LAI) along with eleven parameters (Table 4) required to calculate the next phenological state (Lowman and Barros,

2018). This method was first introduced by Moradkhani et al. (2005) as a way of simultaneously predicting states and pa-

rameters in hydrology models, and it was later implemented by Stöckli et al. (2008) specifically for assimilating remotely215

sensed data in phenological models. Lowman and Barros (2018)) added additional soil water parameters to the data assimi-

lation system to improve phenological state predictions. Using outputs from the DCHM-V and updating phenological states

from MODIS FPAR and LAI in the DCBP, we generate ensembles of phenology parameters representing different precipita-

tion regimes (above average, below average, and mixed conditions). We run Monte-Carlo simulations of the DCHM-PV with

N=2000 ensembles of the DCBP model parameters. Ensembles were generated using the final mean and standard deviations220

of the parameters from each inference period.

2.6 Model Simulations

We begin by running the DCHM-V from 2002-2019 (spinning-up 2002 three times to allow for model stabilization, Lowman

and Barros (2016, 2018)) for all three sites. Using the DCHM-V outputs from 2003-2005 along with the DCBP, we generate

ensembles (N=2000) of phenology model parameters for three meteorological scenarios for each site (Table 3) yielding a total225

of twelve simulations (one DCHM-V and three DCHM-PV for each of the three sites). Each of the nine phenology ensembles

consist of 2000 sets of parameters so each of the nine DCHM-PV simulations consist of 2000 Monte Carlo experiments. We

chose the 2003-2005 period because it allows us to establish ensembles of phenology parameters associated with dry, wet, and

mixed condition periods. The parameters used in the DCHM-PV simulations are from the one-year periods of 2003 (DRY)

and 2005 (WET), and from the three-year period 2003-2005 (3YR). The chosen assimilation period is prior to the case stud-230

ies described in Section 2.7, thereby preventing the use of over fit model parameters when investigating the behavior of the

DCHM-PV results. The three sets of phenology parameters for each site allows us to investigate vegetation-atmosphere feed-

Table 3. Summary of precipitation conditions during assimilation periods.

StageIV Annual Precipitation Accumulation [mm]

Year(s) Abbreviations US-KFS US-KLS US-Kon

2003-2005 3YR 1066 770 847

2003 DRY 804 756 670

2005 WET 1242 806 956

backs through different causal lenses by generating phenology model parameters in several climate scenarios. Furthermore,

this type of simulation permits us to investigate if meteorological conditions alter plant behavior (become more isohydric or

anisohydric), rather than investigating if vegetation behavior affects the development of flash drought. Broadly speaking, veg-235

etation model parameters trained on dry conditions will represent isohydric vegetation and vice versa for vegetation trained on
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Figure 3. Schematic of modeling workflow. Spatial and temporal resolutions of all forcing data match Stage IV precipitation (4 km and 1

h) and dictate DCHM scales. Land cover, soil properties, and atmospheric forcing inputs come from MODIS, STATSGO, and NLDAS-2,

respectively. Simulations are run from 2002-2019. Three ensembles of parameters for the predictive phenology routine in the DCHM-PV are

determined using an ensemble Kalman filter (EnKF) with DCHM-V outputs, MODIS MOD15A2H FPAR/LAI, and concurrent meteorolog-

ical conditions from 2003 (DRY), 2005 (WET), and 2003-2005 (3YR). DCHM-V outputs of interest include evapotranspiration (ET), Root

water uptake (RU), and gross primary productivity (GPP). Additional DCHM-PV outputs include predicted fraction of photosynthetically

active radiation (FPAR) and leaf area index (LAI).

wet conditions because vegetation adapted to minimal rainfall is more conservative in its water use (Lowman and Barros, 2018;

Sade et al., 2012). By using the three different data assimilation periods, we are able to capture the sensitivity of phenology

model parameters to the meteorological conditions.

2.7 Study Period and Outputs240

We run the DCHM-V and DCHM-PV for 2002-2019. We are able to generate phenology parameters using a subset of this

time frame (2003-2005), allowing us to investigate land-atmosphere interactions outside of the parameter inference period.

We highlight results from the three AmeriFlux sites for 2012 (flash drought) and 2019 (above average precipitation) to draw

conclusions about plant responses during flash drought. We are also able to compute yearly totals of GPP and ET from 2006-

2019 to assess interannual variability of outputs from DCHM-V and DCHM-PV. Transpiration is calculated from total root245

water uptake through the three soil layers to partition ET into evaporation and transpiration (Lowman and Barros, 2018; Lai

and Katul, 2000). Water use efficiency is represented as the ratio of GPP and ET (WUE = GPP/ET, Beer et al. (2009)). We

highlight differences between the DCHM-V and DCHM-PV model simulations and compare outputs to remotely sensed and

in situ observations where available.
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Figure 4. Growth rate parameters with one standard deviation for each site for all three data assimilation periods: 3YR (2003-2005), WET

(2005), DRY (2003).

3 Results250

We first present phenology model parameters as estimated from the data assimilation procedure. Then, we show DCHM-V (

forced phenology) and DCHM-PV (predictive phenology) results.

3.1 Phenology

3.1.1 Phenology Model Parameters

The growth rate parameter, γ, dictates how much phenological state (i.e. FPAR and LAI) can change in a given time step (Low-255

man and Barros, 2018; Stöckli et al., 2008). Lower uncertainty in the growth rate parameter establishes the 3YR assimilation

period, with a mixture of wet and dry years, as the preferred choice for running the DCHM-PV (Figure 4) and is in agreement

with Lowman and Barros (2018). This lower uncertainty propagates through the DCBP in the DCHM-PV, reducing uncertainty

in the predictions of FPAR and LAI (Figures 5 and 6). The values of gamma vary by site, and therefore plant function type

(PFT). The smaller magnitudes of the growth parameters indicates that vegetation is less likely to make abrupt changes and260

exhibit more resilience when faced with extreme dry down. Other parameter estimation outputs used to generate ensembles

from the 3YR assimilation period can be found in Table 4.

3.1.2 FPAR

Results indicate slower senescence and reduced variance using the 3YR assimilation parameters during late June and early

July 2012 across all three sites. A decrease in FPAR can be seen in late June 2012 across all simulations (Figure 5). This aligns265

with the known period of flash drought that occurred across Kansas (Lisonbee et al., 2021). For each site, the simulated FPAR
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Table 4. Phenology model parameters from 3YR assimilation period.

Mean parameter estimates ± one standard deviation

Parameter Description Units US-KFS US-KLS US-Kon

Tminmin Minimum value of daily minimum temperature ◦C −5.5± 3.1 0.1± 2.4 −2.3± 3.2

Tminmax Maximum value of daily minimum temperature ◦C 14.0± 1.8 16.5± 1.8 15.8± 2.0

Phtmin Minimum daily exposure to sunlight h 10.0± 0.4 9.8± 0.6 10.7± 0.6

Phtmax Maximum daily exposure to sunlight h 14.3± 0.3 14.2± 0.4 14.3± 0.4

V PDavgmin Minimum daily average vapor pressure deficit mb 17.1± 1.3 16.6± 1.4 16.9± 1.4

V PDavgmax Maximum daily average vapor pressure deficit mb 58.7± 2.3 55.8± 2.2 55.6± 2.3

ψsoil,avgmin Minimum daily average soil water potential J kg−1 −42.1± 5.6 −37.2± 5.8 16.9± 5.5

ψsoil,avgmax Maximum daily average soil water potential J kg−1 −7.4± 1.3 −7.0± 1.4 −6.9± 1.4

FPARmin Minimum fraction of photosynthetically active

radiation

- 0.31± 0.01 0.35± 0.01 0.31± 0.01

LAImax Maximum leaf area index m2m−2 6.36± 0.15 6.51± 0.17 6.65± 0.18

γ growth rate day−1 0.22± 0.04 0.31± 0.06 0.38± 0.08

from the 3YR assimilation phenology parameters shows a less dramatic response in the decrease in FPAR when compared to

the DCHM-PV simulations using the WET and DRY parameters. The predicted values of FPAR at US-KFS and US-KLS are

slightly higher than the MODIS values during the 2012 growing season. The predicted values of FPAR match well against

MODIS for the US-Kon site, especially during the decline in late June through July. During the flash drought period, there is a270

notable decrease in variance, or uncertainty, across the Monte Carlo simulations.

For US-KFS across the three simulations, the simulation using the WET parameters achieves a higher FPAR during the flash

drought and holds its peak throughout the month of May, with declines beginning in June and bottoming in early July before

rising again in the latter part of the growing season. The decrease in FPAR for the WET parameters is from 0.77 to 0.41 while

reductions from the time of peak FPAR to early July in the simulations using DRY and 3YR parameters are from 0.73 to 0.47275

and 0.76 to 0.53, respectively.

Results from an above average precipitation year (2019) show a steady increase, a longer peak season, and a decrease in line

with fall senescence across all simulations, though WET and DRY parameters at US-KLS both lead to a phenological response

in July 2019, likely due to the below average July precipitation. Overall, the simulations tend to follow the same patterns as

MODIS throughout the growing season, irrespective of choice of parameters. Similar to the 2012 results, simulations using280

phenology parameters from the 3YR assimilation period showed slower late-season declines in FPAR than the simulations

using parameters derived from the WET or DRY assimilation periods. This behavior can be seen from the 3YR parameter

simulations for US-KLS and US-Kon which show higher FPAR through July. At these sites, the dip in July FPAR using the
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Figure 5. Time series of fraction of photosynthetically active radiation (FPAR) predicted from DCHM-PV for the flash drought year (2012)

and an above average precipitation year (2019) for the three AmeriFlux study sites (US-KFS, US-KLS, US-Kon). The different colors

represent the usage of parameters from the different data assimilation periods (yellow - 3YR (2003-2005), blue - WET (2005), red - DRY

(2003), with corresponding shaded regions representing one standard deviation of model outputs from the 2000 ensemble simulations. 8 day

MODIS MOD15A2H FPAR is indicated with black markers. The gray shaded region highlights the June to July decrease in FPAR during

the 2012 flash drought.

WET and DRY parameters is likely due to the susceptibility of abrupt changes in response to minimal July rainfall. At US-KFS,

the three different simulations vary little from one another which could be due to the savanna representation at US-KFS and its285

resiliency to the minimal July precipitation during 2019. Despite the minimal July rainfall, phenological stages were generally

resilient due to the abundance of soil water from early precipitation.

3.1.3 LAI

Predicted values of LAI are similar to MODIS LAI, with relative differences between DCHM-PV and MODIS similar to the

FPAR results (Figure 6). During the flash drought year of 2012, a steep decline in modeled LAI can be seen in late June and290

early July across the three sites. The LAI experienced declines of almost 1 m2m−2 in just a few days. DCHM-PV model

outputs of LAI during 2019 match MODIS but are 1-2 m2m−2 higher during June, July, and early August at US-KFS and US-

KLS, and slightly lower than MODIS at US-Kon. Simulated LAI vary slightly across the three sites. For US-KFS, simulations
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Figure 6. Time series plots of leaf area index (LAI) predicted from DCHM-PV for the flash drought year (2012) and an above average

precipitation year (2019) for the three AmeriFlux study sites (US-KFS, US-KLS, US-Kon). The different colors represent the usage of pa-

rameters from the different data assimilation periods (yellow - 3YR (2003-2005), blue - WET (2005), red - DRY (2003)), with corresponding

shaded regions representing one standard deviation of model outputs from the 2000 ensemble simulations. 8 day MODIS MOD15A2H LAI

is indicated with black markers. The gray shaded region highlights the June to July decrease in FPAR during the 2012 flash drought.

using the WET year parameters achieve higher values in LAI than the other two simulations (Figure 6 a,b). For US-KLS, and

US-Kon, the growing season LAI has the highest peaks in the simulations using the 3YR parameters (Figure 6 c,d). With more295

rainfall in May and June 2019, the simulations using the WET parameters show lower LAI than the simulations using the DRY

parameters.

The most consistent similarities across the phenology results is that the simulations using the 3YR parameters generally

show a slower decline in LAI in both a flash drought year and a wet year for all sites. Another similarity across these figures

is that simulations using WET and DRY parameters align with one another more than they match the simulations using 3YR300

parameters. This result is commensurate with the values of the means and variances of the growth rate parameters resulting

from the different assimilation periods.

Differences in the growth rate parameter can also be seen in LAI outputs from the simulations of the DCHM-PV (6). During

the 2012 flash drought, simulations using the 3YR assimilation period show LAI staying high for a longer period of time, and

the decrease develops slower than the other two simulations. This feature is also apparent in the 2019 plots for US-KLS and305
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Figure 7. Time series of yearly totals of GPP and ET for 2006-2019 at US-KFS, US-KLS, and US-Kon from DCHM-V, three DCHM-PV,

AmeriFlux, and MODIS (GPP only). Yearly totals from the 2000 DCHM-PV Monte Carlo simulations are shown as ensemble means and

one standard deviation indicated by error bars. Estimates of ET from AmeriFlux were generated by dividing measurements of latent heat by

the coefficient of vaporization and were eliminated from the analysis if more than 20% of the yearly data was missing.

US-Kon. In the 2019 plots, simulations continue to show growth through June, with peaks occurring in the middle of July,

while the LAI in plots of the WET and DRY simulations seem to flatten their growth from the beginning of June to mid-July.

3.2 Vegetation Responses

3.2.1 GPP

Yearly totals (2006-2019) of GPP are shown in Figure 7 a-c for each site. The points used in the yearly time series represent the310

ensemble means from DCHM-PV and yearly totals from DCHM-V, MODIS, and AmeriFlux tower records. The DCHM-PV

yearly totals of GPP at US-KFS and US-Kon are similar to totals estimated for the same sites in another study which updated

LAI and vegetation cover dynamically using Noah-MP (Hosseini et al., 2022). Ameriflux tower yearly totals were discarded

from the analysis if more than 20% of the data were missing for the year. The error bars on the DCHM-PV plots show one

standard deviation from the mean for the 2000 ensemble members. Carbon uptake during water stress years is about 1 kgCm−2315

less than during years experiencing above average precipitation. The DCHM-V, which uses MODIS to update vegetation state

indices (FPAR and LAI), compares well in magnitude to MODIS GPP yearly assimilation rates. In periods where there is no

water stress (e.g., 2019), the DCHM-PV predicts more carbon assimilation than DCHM-V and MODIS. All simulations show

major declines in net carbon assimilation during the 2012 flash drought.

We highlight the seasonal variation of GPP at US-KFS (Figures 8, A11, A12) for simulations from the DCHM-V and -PV320

(3YR) with observations from MODIS and AmeriFlux for the flash drought year (2012) and an above average precipitation year
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Figure 8. Time series from the DCHM-V, DCHM-PV three year assimilation period, 8 day MODIS, and daily AmeriFlux totals of GPP at

US-KFS for (a) 2012, flash drought year and (b) 2019, an above average precipitation year.

(2019). We observe that during the growing season of 2019, the simulations all predict GPP on par with MODIS, but during

the flash drought of 2012, the DCHM simulations (both -V and -PV) respond to the dry down earlier than either MODIS or the

tower. In particular, in late June to early July 2012, carbon uptake decreases from 5.0 to 0.7 gCm−2day−1. From these plots,

we can also notice that uncertainties from the ensemble runs are largest during the green up period, but are generally smaller325

in the flash drought year than in the above average precipitation year.

3.3 ET

Yearly ET totals for 2012 are approximately 0.1 m yr−1 less than maximum at US-KFS (Figure 7 d) and 0.2 m yr−1 at the

other sites (Figure 7 e,f). DCHM-PV simulations (using WET, DRY, and 3YR) tend to estimate higher ET than the DCHM-V

and lower ET than that observed by AmeriFlux (Figure 9 with other sites in appendix, Figures A13 and A14). The Monte Carlo330

simulations indicate uncertainty is smaller during the flash drought (Figure 9). Overall uncertainty in ET increases during the

green up period at the beginning of the growing season (April). The differences in simulated ET among the different assim-

ilation strategies are most apparent during the early months of the growing season (April - May) with the WET assimilation

showing highest rates of ET. During the 2012 flash drought from June through August, outputs of ET were similar across

simulations with different phenology model parameters. Peaks in ET occur after precipitation events with extended declines335

and troughs between rain events. The amount of troughs and the corresponding ET rates are indicative of slowed vegetation

activity in response to the water stress.

When ET was partitioned into evaporation and transpiration during the flash drought, transpiration gradually declined.

Resulting large fluctuations in total ET are a result of evaporation in response to precipitation (Figure 10a). This suggests water

evaporated before it had a chance to infiltrate the soils and be absorbed by the vegetation root systems. Since we compute340
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Figure 9. Time series of ET at US-KFS for (a) 2012, flash drought year and (b) 2019, wet year from DCHM-V and three different DCHM-PV

simulations. Two standard deviations are shown for DCHM-PV simulations. AmeriFlux ET is showing with the blue markers.

Figure 10. Ensemble means of simulated evapotranspiration partitioned into evaporation (E) and transpiration (T) for US-KFS in (a) 2012,

flash drought and (b) 2019, wet year. Transpiration totals are in DCHM from total root uptake across the three soil layers. The top axis is

daily StageIV precipitation totals.

transpiration from root water uptake through the three soil layers, the observation that transpiration decreases but still maintains

a small rate through the flash drought is indicative of vegetation extracting water from the deeper soil layers as it undergoes

stress. ET never completely shuts down because there is always a small rate of transpiration. Evaporation reaches zero during

early July 2012, which is the peak of the flash drought period.
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In contrast to 2012, during 2019 there was ample rainfall and water available for plant use throughout the growing season.345

Despite minimal rainfall in early July 2019, we observe DCHM-PV (3YR) model predictions of decreased ET in response to

the lower rainfall, but transpiration rates were still higher than evaporation rates throughout the growing season (Figure 10b).

During the growing season, transpiration rates usually comprise more than 50% of total ET at US-KFS, a finding that aligns

with results from Hosseini et al. (2022) who used the Noah-MP Land Surface Model which also computes transpiration from

root water uptake (Li et al., 2021). However, during the flash drought year of 2012, transpiration rates fell below 35% of overall350

ET at US-KFS (Figure 12a). Partitioned transpiration decreases approximately 40% from May to June at US-KLS (Figure 12b),

and 20% at US-Kon (Figure 12c). The rapid decline in transpiration rates can be attributed to the slowing of root uptake due

to the lack of available water. The transpiration rates follow changes in GPP during the flash drought of 2012 (Figure A17a).

However, ET decreases at US-KFS during July 2019 while experiencing a brief period of low rainfall (Figure 10b), yet is able

to maintain rates of GPP during this period due to the amount of available water in soils from the excessive precipitation during355

May and June (Figures A2, A4, A6).

4 Discussion

4.1 Vegetation Responses to Flash Drought

Vegetation responses to water stress can be seen through fluctuations in GPP (Zhang and Yuan, 2020; Jin et al., 2019) and ET

(Chen et al., 2019). Decreases in GPP occur when plants close their stomata. With the stomata closed, plants will not undergo360

normal gas exchange through photosynthesis and decrease their transpiration rates. Transpiration is only one part of ET, so we

must be careful not to directly link fluctuations in GPP with fluctuations in ET. Evaporation can still be high when there is

little to no transpiration, but GPP tend to follow the same trajectories as transpiration (Beer et al., 2009). The DCHM accounts

for evaporation of water intercepted by the canopy, water that has ponded on the ground, and water in the top soil layer. At

the onset of flash drought there is an increase in evaporative demand for water which leads to a temporary increase in surface365

evaporation (Lowman et al., in press; Otkin et al., 2018) until the soil and canopy reservoirs no longer contain enough water

to evaporate. Then evaporation shuts down. With small rates of transpiration still occurring, small rates of GPP are maintained

(i.e. carbon uptake drastically slows, but it does not stop, Figure A17a) which affects plant WUE (Figure 11a). These results

align with our initial hypotheses (H1, H2). However, we did find that even during the peak flash drought, plants were still

pulling small amounts of water from deep soil layers, allowing for transpiration and carbon exchanges, preventing plants from370

complete shut down.

We compare simulated and observed data to determine how vegetation regulates its water use, either pulling water from

deeper or shutting down transpiration. We compare the timing of fluctuations in GPP and ET by combining previous plots

together on the same axes (Figure A17). During the flash drought of 2012 (mid May - early July), we estimated steady declines

in rates of GPP with bursts in ET corresponding to rain recharge events. This implies evaporation may be the main contributor375

to total ET during the flash drought since GPP is decreasing (Figures 8a and A17a). The decreases in GPP due to flash drought

during June and July 2012 are consistent in terms of magnitude withdecreases found in recent studies (Yao et al., 2022; Poonia

19

https://doi.org/10.5194/hess-2023-146
Preprint. Discussion started: 11 July 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 11. Computed growing season water use efficiency (WUE=GPP/ET) from DCHM-V, DCHM-PV (3YR), and AmeriFlux for (a) 2012,

flash drought and (b) 2019, wet year at US-KFS. AmeriFlux WUE computed by converting latent heat into ET by dividing by the coefficient

of vaporization.

et al., 2022; Zhang et al., 2020). These decreases are attributed to changes in transpiration during flash drought (Figure 10a).

We also find that when plants are transpiring more, they are more efficient in their water use (Figure 12).

Figure 12. 2012-2019 growing season time series transpiration as a fraction of ET (a-c) and WUE (d-f) for all three study sites.

20

https://doi.org/10.5194/hess-2023-146
Preprint. Discussion started: 11 July 2023
c© Author(s) 2023. CC BY 4.0 License.



Future studies would benefit from improved estimates of root water uptake since it is directly linked to the amount of avail-380

able water for transpiration. Vegetation types have distinct root characteristics leading to differences in hydraulic tendencies

under variable water regimes. Species specific hydraulic strategies may differ in a single location (Liu et al., 2020) so gen-

eralization of water use by PFT in hydrologic models would represent the average tendency of vegetation to regulate water.

It is also possible that the changing phenological state of root systems plays an important role in root water uptake. Thus,

researchers should ensure parameterizations of plant functions are accurately representing vegetation state and heterogeneity385

of the study area.

We find noteworthy differences when we consider the contrasting conditions in July 2012 and 2019. During both years,

minimal rainfall occurred in late June into early July, but rates of ET did not decline as much in 2019 as they did in 2012.

When US-KFS received rain in July 2012, there were immediate increases in rates of ET (Figure 9). This is likely due to

the size of the rain events (Figure 10 coupled with the evaporative demand of the atmosphere. It is important to examine the390

coupling of ET and GPP since plants transpire as they process carbon. We do not observe changes in GPP during July 2012

corresponding to the increased ET, indicating the main driver or ET during this time is the evaporation component and not

transpiration. Alternatively, GPP levels off in July 2019, and does not follow the 2012 decline as a result of little rainfall. This

is indicative of the vegetation remaining healthy during a period of low rainfall in a year experiencing otherwise above average

rainfall. The continued carbon cycling is likely due to the soil moisture available to the plants during this time (Figure A2).395

The modeled vegetation responses are likely linked to the predictive phenological responses to drought (Lowman and Barros,

2018; Cui et al., 2017). As in Lowman and Barros (2018), the modeled FPAR and LAI were directly linked to the resulting

GPP. By updating phenological states using the phenology model rather than forcing phenology with remotely sensed values,

we are able to capture the direct vegetation response to water availability. When more water is available, DCHM-PV simulation

predicts higher values of FPAR, LAI, and thus higher values of GPP than MODIS. Decreases in phenological state due to the400

lack of soil water available to plants affected carbon and water exchanges, validating our third hypothesis (H3). At the onset

of flash drought, DCHM-V and -PV respond faster to changes in LAI and FPAR than MODIS whose affects were also seen

in differences in modeled and remotely sensed GPP (Figure 8). Moreover, regardless of the simulation, the rapidness of the

change in LAI and FPAR is indicative of flash drought (Figures 5 and 6) and in agreement with (Zhang et al., 2020).

4.2 Uncertainty in Vegetation Responses405

We implemented three different assimilation strategies to prepare ensemble parameters to be used in the predictive phenology

routine in the DCHM-PV. The 2003-2005 period represented “average” conditions as it spanned periods of below and above

average precipitation. Compared to the single year assimilation periods (WET and DRY), the uncertainty ranges in model

parameters were smaller in the 3YR assimilation period. The results are consistent with (Lowman and Barros, 2018) in that

uncertainty in phenology shrinks during dry periods. Daily standard deviations in LAI across simulations are approximately410

0.5 m2m−2 during the growing season of a wet year but shrink to values of 0.2 at the onset of flash drought and less than 0.1

during peak flash drought. The lower ensemble spread during the flash drought period corresponds with winter phenological

variability when plants are dormant. Similarly, decreases in uncertainty in estimates of GPP and ET during the flash drought
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period fall to winter levels implying variability in plant life stage and functionality are similar in drought periods and dormant

months.415

The growth parameters, which drives the plant activity, were all smaller in the 3YR assimilation period for all three test

sites when compared to simulations from drought and wet years. Vegetation leaf out occurs later in the simulations from the

3YR assimilations (Figures 5 and 6). However, the more notable effects of the smaller growth parameters, with regards to

flash drought, can be seen through the delayed phenology responses in the 3YR assimilations compared to the WET/DRY

assimilations. Across the three test sites, the FPAR and LAI decreases were slower in the simulations that used the 3YR420

assimilation period. The vegetation that was trained using average conditions was slower to change when faced with the abrupt

decrease in water availability. Although it was an above average year for precipitation, there was little rainfall in early July

2019 at our Kansas sites. At US-KLS and US-Kon, there was a rapid decrease in LAI during this time (Figure 6d,f) with some

recovery in August. Moreover, the resiliency to the abrupt change is apparent in the maintenance of season LAI and FPAR

dynamics from the 3YR assimilation simulations.425

Future studies should use an assimilation period encompassing multiple wetness regimes (i.e. multi year inference period)

to best represent the variety and variability of climatological conditions, and because it leads to less abrupt changes to extreme

stress. However, if the intent of a future study is to investigate vegetation responses to extreme events in a changing climate

(Kirono et al., 2020; Pearson et al., 2013, e.g.,), it may be appropriate to use inference periods encompassing only wet or dry

conditions. For example, researchers could fit parameters to a dry regime if they want to investigate how plants used to wetter430

conditions will function in a future regime where more drought is expected.

4.3 Kansas Site Comparisons during 2012 Flash Drought

The seasonal dynamics of FPAR, LAI, and GPP from the simulations match well against the remotely sensed observations from

MODIS regardless of vegetation type. However, there are subtle differences in vegetation responses to water stress across all

three sites. As seen in Figures 5 and 6, the responses to flash drought at US-KLS (cropland) and US-Kon (grassland) follow a435

similar trajectory throughout the growing season. The savanna at US-KFS (note - AmeriFlux classifies US-KFS as a grassland

but the MODIS pixel (500m) containing US-KFS reports a savanna terrain) suggests more resilience to flash drought at first

when compared to croplands and grasslands in that values of FPAR and LAI are maintained for a longer period before tapering

in late June. This can also be seen in the slow reductions in GPP during May and June 2012 before reaching a minimum

near the beginning of July marking stomatal closure and shift toward more isohydric behavior (Meinzer, 2002). The slower440

reduction, driven by the lower growth rate parameter (γ), indicates that the vegetation is responding to the initial water stress,

but also maintaining some activity.

The vegetation at US-KLS and US-Kon show an earlier response to the water stress in 2012 by slowing phenology (FPAR,

Figure 5; LAI, Figure 6) at the beginning of May. Both sites experience another decrease in activity by the beginning of July.

These conservative strategies indicate that the vegetation is more isohydric at these locations. Interestingly, when the phenology445

model parameters are generated from observations from a year of above average precipitation, the vegetation responds even

faster to the stress of water. It is likely that the water use characteristics defined in DCHM-PV (Lowman and Barros, 2016;
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Garcia-Quijano and Barros, 2005) based on PFT cause the model to be more conservative in its water use strategies. Another

explanation could be the deep soil layers (1.83 m, 72 in) (Soil Survey Staff) allowing for deep root the deep soils of the Kansas

Plains and to allow the model to account for deeper root water uptake (Lowman and Barros, 2016).450

4.4 Implications

The coupling of the land-surface-subsurface hydrology model to the predictive phenology model allows for dynamic updates

of vegetation growth states (Lowman and Barros, 2018). By updating phenology, we are able to better capture vegetation re-

sponses to water stress events through water use efficiency (Figure 11), indicating plants that transpire more are more efficient

in their water use. Vegetation activity is directly linked to the coupling of the water and carbon cycling through photosynthesis455

(Farquhar et al., 1980) and assimilating plant phenology into land-surface models (e.g., DCHM-V or Noah-MP) can improve

estimates of GPP and ET (Hosseini et al., 2022; Xu et al., 2021; Mocko et al., 2021; Kumar et al., 2019). This study allows us

to investigate how vegetation responses can be used to study the effects of flash droughts on the total carbon budget. Our mod-

eling approach permits direct comparisons of remotely sensed observations to physically derived estimates. Generally, MODIS

overestimates GPP compared to EC flux tower data (Heinsch et al., 2006; Running et al., 2004) and our model underestimates460

MODIS and flux tower GPP during drought periods and aligns more with MODIS and flux tower estimates during high pre-

cipitation years. By explicitly considering plant tendencies, we can dynamically account for current meteorological conditions

and thus use physical principles to capture vegetation-atmosphere interactions. Moving forward, improvements made to phe-

nological states of the entire plants (i.e. root systems included) rather than just the leaf phenology might better capture water

movement through plants under water stress conditions.465

4.5 Limitations

Capturing phenological responses within a physically based model is not without its limitations. As we update phenological

states during the DCHM-PV simulations, forced atmospheric conditions from NLDAS-2 and StageIV variables are the same as

in the DCHM-V simulations. We continue to use these conditions to force the model, so it is possible that the meteorological

observations are already accounting for some vegetation-atmosphere interactions. When analyzing DCHM outputs against470

remotely sensed and eddy covariance measurements, we are comparing data across temporal and spatial scales. For example,

the DCHM takes in one value for soil texture and porosity and land cover type, and uses these values to define how water moves

through soils and root systems across the 4 km grid cell. Vegetation at AmeriFlux tower sites differs from the interpolated

MODIS land cover type used in the DCHM in some instances. Other challenges arise throughout the analysis with missing

tower data, and data at different scales, units, and measurement locations. Here, the DCHM is operating at a 4 km grid scale,475

so representing vegetation as one PFT does not capture the landscape heterogeneity below the grid scale even if it does match

AmeriFlux. Soil moisture measurements from SMERGE, Noah-LSM, and Ameriflux (Figures A1-A6) are all at varying depths

that may differ from, but most closely align with, the soil layers we defined. We derive evapotranspiration using latent heat

fluxes from AmeriFlux towers and recognize that the energy balance may not be closed in doing this (Wilson et al., 2002),
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while the DCHM forces energy balance closure. To get past the limitations, the ensemble Monte Carlo simulations help capture480

model uncertainty, incorporated throughout the results as ensemble means and standard deviations.

5 Conclusions

Changes in vegetation phenology, or growth stage, drive water use strategies and have implications on the carbon and water

budgets (H3). To address how water stresses affect carbon cycling, we implemented a one-dimensional version of the DCHM-V

coupled to a predictive phenology model and analyzed vegetation water use strategies during drought and non drought periods.485

The modeling procedure first required running the DCHM-V with phenology updates from remotely sensed observations

of FPAR and LAI. In order to couple the predictive phenology model to the DCHM-V, we generated ensembles of model

parameters from the outputs of the DCHM-V with concurrent meteorological conditions. We ran three simulations using three

distinct assimilation periods for three different sites in Kansas. Uncertainty in model parameters and outputs is reduced when a

three year assimilation period (covering net-average conditions) is used. Decreases in predicted FPAR and LAI and reductions490

in their uncertainty ranges aligned with periods of known flash drought. These proxies for vegetation state influence rates of ET

and GPP and thus WUE as seen through the partitioning of ET and the near shutdown of transpiration and carbon assimilation

(H2) during the summer of 2012 (Figure 11a), while evaporation continued in response to precipitation and atmospheric

demand for water (H1). The seasonal timing of the flash drought likely had larger impacts since the rapid dry down occurred

during the peak growing season (Yuan et al., 2019). The amount of available water is a major influence on vegetation activity.495

In this region of the United States, droughts can reduce yearly carbon assimilation by 50% compared to periods of average

or above average precipitation (Figure 7a-c). This has major implications for the annual crop yield as well as the carbon

uptake capacity for the grasslands and savannas that cover most of the Midwestern US. Future studies should investigate how

different vegetation types change their water use strategies in response to different water stresses by focusing on (1) expanding

this modeling framework to include seasonal variations in the representation of root distributions which can affect subsurface500

responses to water stresses and (2) exploring a wider range of plant function types and climatological regimes.

Appendix A: Additional Figures
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Figure A1. Top layer soil moisture at US-KFS for the flash drought year 2012.

Figure A2. Top layer soil moisture for the non flash drought year 2019.

Figure A3. Middle layer soil moisture for the flash drought year 2012.
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Figure A4. Middle layer soil moisture for the non flash drought year 2019.

Figure A5. Deep layer soil moisture for the flash drought year 2012.

Figure A6. Deep layer soil moisture for the non flash drought year 2019.
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Figure A7. Root water uptake through three soil layers throughout 2012 using the DCHM-V and DCHM-PV 3YR.
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Figure A8. Root water uptake through three soil layers throughout 2019 using the DCHM-V and DCHM-PV 3YR.
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Figure A9. MODIS (MOD17A2H) vs DCHM-PV (DRY, WET, and 3YR) for all three sites during 2012.

Figure A10. MODIS (MOD17A2H) vs DCHM-PV (DRY, WET, and 3YR) for all three sites during 2012.
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Figure A11. Time series from the DCHM-V, DCHM-PV three year assimilation period, 8 day MODIS, and daily AmeriFlux totals of GPP

at US-KLS for (a) 2012, flash drought year and (b) 2019, an above average precipitation year.

Figure A12. Time series from the DCHM-V, DCHM-PV three year assimilation period, 8 day MODIS, and daily AmeriFlux totals of GPP

at US-Kon for (a) 2012, flash drought year and (b) 2019, an above average precipitation year.
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Figure A13. Time series of ET at US-KLS for (a) 2012, flash drought year and (b) 2019, wet year from DCHM-V and three different

DCHM-PV simulations. Two standard deviations are shown for DCHM-PV simulations. AmeriFlux ET is showing with the blue markers.

Figure A14. Time series of ET at US-Kon for (a) 2012, flash drought year and (b) 2019, wet year from DCHM-V and three different DCHM-

PV simulations. Two standard deviations are shown for DCHM-PV simulations. AmeriFlux ET is showing with the blue markers.
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Figure A15. Simulated evapotranspiration partitioned into evaporation (E) and transpiration (T) for US-KLS in (a) 2012, flash drought and

(b) 2019, wet year. Transpiration totals are in DCHM from total root uptake across the three soil layers. The top axis is daily StageIV

precipitation totals.

Figure A16. Simulated evapotranspiration partitioned into evaporation (E) and transpiration (T) for US-Kon in (a) 2012, flash drought and

(b) 2019, wet year. Transpiration totals are in DCHM from total root uptake across the three soil layers. The top axis is daily StageIV

precipitation totals.
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Figure A17. Simulated daily totals of GPP and ET from the DCHM-PV 3YR assimilation period for (a) 2012, flash drought year and (b)

2019, wet year.

Figure A18. 2012 and 2019 water use efficiency (WUE = GPP/ET) for US-KLS.
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Figure A19. 2012 and 2019 water use efficiency (WUE = GPP/ET) for US-Kon.
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